- 1. Introduction / Case Studies
- 2. Transitioning workloads to AWS Graviton
- 3. Optimizing for Graviton
- 3.1. C/C++
- 3.2. Go
- 3.3. Java
- 3.4. JAR files
- 3.5. .NET
- 3.6. Node.JS
- 3.7. PHP
- 3.8. PHP OPcache
- 3.9. Python
- 3.10. Rust
- 3.11. R
- 3.12. Spark
- 3.13. AWS Lambda
- 4. Operating Systems support
- 5. Containers on Graviton
- 6. Headless website testing with Chrome and Puppeteer
- 7. Kafka
- 8. AMIs for Graviton
- 9. AWS Managed Services available on Graviton
- 10. Third-party Software Vendors
- 11. HPC (High Perf Computing)
- 12. Build HPC software
- Machine Learning
- 13. PyTorch
- 14. TensorFlow
- 15. llama.cpp
- 16. vLLM
- 17. ONNX
- Performance Runbook
- 18. Pre-requisites and FAQ
- 19. Introduction to Benchmarking
- 20. System Load and Compute Headroom
- 21. Defining your benchmark
- 22. Configuring your load generator
- 23. Configuring your system-under-test environment
- 24. Debugging performance — “What part of the system is slow?”
- 25. Debugging performance — “What part of the code is slow?”
- 26. Debugging performance — “What part of the hardware is slow?”
- 27. Optimizing performance
- 28. Appendix — Additional resources
- 29. References
- Deep dive
- 30. Runtime feature detection
- 31. DPDK, SPDK, and other datapath software
- 32. Taking advantage of Arm Advanced SIMD instructions
- 33. Assembly Optimization Guide for Graviton Arm64 Processors
- 34. Profiling
- How To Resources